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Abstract

The steady-state incompressible Navier-Stokes equations in two-dimensions are solved
numerically using the artificial compressibility formulation. The convective terms are up-
wind differenced using a flux-difference split approach that has uniformly high accuracy
throughout the interior grid points. The viscous fluxes are differenced using second-order
accurate central differences. The numerical system of equations is solved using an implicit
line relaxation scheme. The scheme is applicable to both steady-state and unsteady flow
computations. In the current work steady-state applications are emphasized. Character-
istic boundary conditions are formulated and used in the solution procedure. The overall
scheme is capable of being run at extremely large pseudo-time steps, leading to fast con-
vergence. Three test cases are presented to demonstrate the accuracy and robustness of
the code. These are the flow in a square driven cavity, flow over a backward facing step,
and flow around a two-dimensional circular cylinder.

1. Introduction

The overall motivation for the current work is a desire to find an efficient method
of solution for the incompressible Navier-Stokes equations for complex three-dimensional
(3D) geometries. To this end, the present study looks at applying an upwind differencing
scheme in conjunction with the pseudocompressibility method. This method was first
introduced by Chorin [1] and has been used with much success by Kwak et al [2] for solving
complex incompressible flow problems in generalized coordinates. In this formulation,
a time derivative of pressure is added to the continuity equation. Together with the
momentum equations, this forms a hyperbolic system of equations which can be marched
in pseudo-time to a steady-state solution. The method can also be extended to solve time-
dependent problems [3.,4] by using subiterations in pseudo-time at every physical time step.
If all that is desired is the steady-state solution to a problem the pseudocompressibility
method can be a very efficient formulation because it does not require that a divergence
free velocity field be obtained at each iteration. The addition of the time derivative of
pressure to the continuity creates a hyperbolic system of equations complete with artificial
pressure waves of finite speed. When the solution converges to a steady-state, a divergence
free solution is obtained. Since this is the case, many of the well-developed compressible
flow algorithms can utilized for this method.

Many previous applications of this method have used central differencing of the con-
vective fluxes. This approach also requires that artificial dissipation be explicitly added
in order to damp out the spurious oscillations which are due to the nonlinearity of the
convective fluxes. Such a scheme can be difficult to apply as the artificial dissipation pa-
rameters must be adjusted for each specific calculation. The use of too much artificial
dissipation will also tend to hamper the accuracy of the calculations [5]. In order to avoid
these problems associated with central differencing, an upwind differencing scheme is con-
sidered here. While upwind differencing does add artificial viscosity, it does so based on the
physics of the problem and does not require the user to specify an artificial viscosity pa-
rameter. Of most recent interest have been the class of upwind-differencing schemes which
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bias the differencing based on the sign of the eigenvalues of the convective flux Jacobians.
A number of these types of schemes have been developed in conjunction with solving the
Euler equations and the compressible Navier-Stokes equations [6-9]. The development of
these schemes base the upwind differencing on the physics of the Riemann problem. In
the case of the pseudocompressibility method the upwind differencing is merely a way of
using the physics of the artificial waves to obtain a smooth numerical solution.

Much of the current development of upwind-differencing schemes has focused on the
ability to resolve sharp discontinuities without kinks or overshoots. By limiting the order of
the differencing at points near the discontinuities, and thereby increasing the dissipation
provided by the differencing, the schemes have the total variation diminishing (TVD)
property. Applications of TVD schemes to the incompressible equations were done by
Hartwich and Hsu [10,11] and Gorski [12]. These investigators were able to obtain 3D
solutions which were third order accurate in the convective terms, except near regions
of large change in gradient, where the order of the differencing was reduced in order to
increase the amount of dissipation added.

Since solutions to the incompressible equations do not have strong discontinuities
such as shocks, it is reasoned that the incompressible equations could be solved without
the need for any limiting, and that flux-difference splitting of uniformly high order could
be used. This paper attempts to show that this is so by using a flux-difference splitting
type of formulation similar to that used for compressible flow in [6,7]. The current work
concentrates on the development of this scheme with the use of a two-dimensional (2D) flow
solver using fifth-order upwind differencing of the convective terms. Since the development
of the upwind-differencing schemes considered here are based upon an analysis of a one-
dimensional hyperbolic conservation law, the use of a 2D code for the initial testing done
here will not be out of line from the desired goal of a 3D algorithm. This will expedite
much of the code development because of the smaller computational requirements of a 2D
code and because of the relative ease with which 2D results can be analyzed, compared,
and presented.

In the following sections, the details of the 2D code are presented, including the govern-
ing equations and the similarity transformation for the Jacobian matrix of the convective
fluxes. The specific details of the upwind scheme are given, followed by the details of the
implicit line relaxation scheme used to solve the equations. Some boundary conditions
based on the method of characteristics have been developed, and are presented. The com-
puted results section shows the robustness and accuracy of the code by presenting three
sample problems, the flow inside a driven cavity, the flow over a backward facing step, and
the flow over a circular cylinder.

2. Governing Equations

The equations governing constant density viscous flow are presented here in nondimen-
sional form. Following the pseudocompressibility formulation a time derivative of pressure
is added to the continuity equation resulting in
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where u and v are velocity components in the z and y directions, respectively, and [ is
known as the pseudocompressibility constant. Here, 7 represents pseudo-time and is not
related in any way with physical time. Combining Eq. (1) with the momentum equations
for the incompressible Navier-Stokes equations results in the following system in Cartesian
coordinates

0 0
—D+ —(F - F, —(F—-F,)=0
or 61( ) 5y( )
p Bu B
D= |u E=|u’+p = uv
v uv v? +p
0 0 :
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where p is the pressure. In this formulation the Reynolds stress has been approximated as
a function of the strain rate tensor, and thus v represents a sum of the kinematic viscosity

and the turbulent eddy viscosity. The equations in (2) are transformed into generalized
curvilinear coordinates given by

n=n(z,y
The equations are then given by
0~ 0, 0, . - . 1 |P
—D+ —(E—E,))+ —(F—-F,)=0; D=— 3
or + 65( )+ 87]( ) J Z (3)

where J is the Jacobian of the transformation, the metrics of the transformation are
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and the convective fluxes are given by

A 1 BU A 1 BV
E==ulU+&p F = 7 uV 4+ nep (4)
vU + &yp vV 4+ nyp

where the contravariant velocity components, U and V are defined as

U==¢Eu+ &y
V =neu+nyv
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In deriving the viscous fluxes, constant viscosity was assumed for simplicity and be-
cause initially only laminar flow calculations are being performed. This simplification is
not necessary and is easily removed. The viscous fluxes are given by

I 0
By= 5 | (€ +6 ue + (Eone +EynyJuy
I 0

(Exte + Eynyue + (07 + ng)un
L (51:771: + fyny)vf + (773: + Uy)'vn

A v
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J

where v is the kinematic viscosity. If an orthgonal grid is assumed then the viscous fluxes
reduce to

0 0
Bo=5 | (@+&ue | o= | O +mu, (6)
(&2 + & )ve (2 + my)vn

The upwind scheme requires the use of the eigensystem of the Jacobian matrix of
the convective flux vectors. The two-dimensional eigensystem is presented here. For the
three-dimensional equations, see Rogers et al. [13], or Hartwich and Hsu [10]. Beware,
however, that the transformation given by the latter can become singular for certain values
of metrics.

The generalized flux vector for the two-dimensional system of equations is given by

X BQ
Ei= | uQ + kyp (7)
vQ + kyp

where E; = E, F for i = 1,2 respectively, and the metrics are represented with

106 .
k= 25> i=1,2
J Oz '
108 .
hy=—2 i=1,2
Y J 0y ! ’

where & = £, & = 7, and the scaled contravariant velocity component is
Q = k.u+ kyv

The Jacobian matrix of this generalized flux vector is given by

- 0 Bk, Bk
R E; y
A, = gD = | ky kru+Q kyu (8)
ky k,v kyv +Q

A similarity transform for the Jacobian matrix is derived here of the form
Aj = XA X!
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where

Q 0 0
Ai=10 Q+¢ 0 (9)
0 0 Q—c

and where ¢ is the scaled artificial speed of sound given by
c=[Q + Bk, + ky)'? (10)

This variable will always be greater than () and so the second eigenvalue will always
be positive and the third eigenvalue will always be negative. The matrix of the right
eigenvectors is given by

1 0 cf3 —cf3
= 258 —28k, u(c+ Q)+ Pks u(c— Q)+ Bk, (11)
2Bk,  v(c+ Q)+ Bky v(ic— Q)+ Bky

X;

and its inverse is given by

kyu — kv —Quv — Bk, Qu+ Bk,
X '=| ¢-Q Bk, Bk, (12)
—c—Q Bk Bk,

3. Upwind Differencing

Upwind differencing is used to numerically compute the convective flux derivatives.
The upwind scheme is derived from one-dimensional (1D) considerations, and then is
applied to each coordinate direction separately. Flux-difference splitting is used here to
bias the differencing based on the sign of the eigenvalues of the convective flux Jacobian.
The scheme as presented here was originally derived by Roe [7] as an approximate Riemann
solver for the compressible gas dynamics equations.

The derivative of the convective flux in the ¢ direction is approximated by

OE [E~j—|—1/2 — Ej—1/2]
o~ A€

(13)

where Ej+1/2 is a numerical flux and j is the discrete spatial index for the ¢ direction.
The numerical flux is given by

~ 1

Ej1j2 =5 E(Dj11) + E(Dj) = 64172 (14)

For ¢j11/2 = 0 this represents a second-order central difference scheme. The ¢;;,/; is a
dissipation term. A first-order upwind scheme is given by

¢j+1/2 = AE;‘—4-1/2 - AEj_+1/2 (15)
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where AE* is the flux difference across positive or negative traveling waves. The flux
difference is computed as

AE*

j+1/2 = Ai(D)AD]+1/2 (16)

where the A operator is given by
ADjy1/2 = Djt1 — D;

The plus (minus) Jacobian matrix has only positive (negative) eigenvalues and is computed
from

AT = X AFX !
a7

AT = S(A £ M)

1
2
This Jacobian matrix is evaluated using some intermediate value which is a function of
the surrounding points, j and j + 1. The Roe properties [7] which are necessary for a
conservative scheme, are satisfied if this is taken as the average of the surrounding values.

Thus .
D = 5(Dj+1 + Dj) (18)
A scheme of arbitrary order may be derived using these flux differences. Implementa-
tion of higher order accurate approximations in an explicit scheme do not require signifi-
cantly more computational time if the flux differences AE* are all computed at once for
a single line. A third order upwind flux is defined by

Lot +
¢j+1/2 = _g[AE]‘_l/z - AFE

Ha FAES , — AEL ) (19)

j+1/2 j+3/2

The primary problem with using schemes of accuracy greater than third order occurs
at the boundaries. Large stencils will require special treatment at the boundaries, and a
reduction of order is necessary. Therefore, when going to a higher order accurate scheme,
compactness is desirable. Such a scheme was derived by Rai [14] using a fifth-order accurate
upwind-biased stencil. A fifth-order fully upwind difference would require 11 points, but
this upwind-biased scheme requires only 7 points. It is given by

Lo oapt + + +
+ QAE]‘__|_5/2 - 11AE]_+3/2 + 6AE;+1/2 + 3AE]__1/2]

Next to the boundary, near second order accuracy can be maintained by the third and
fifth order schemes by using the following

Pj41/2 =€ AE;_—H/Z —AE

4172 (21)

For e = 0, this flux leads to a second order central difference. For ¢ = 1, this is the same
as the first-order dissipation term given by Eq. (15). By including a nonzero €, dissipation
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is added to the second-order central difference scheme to help suppress any oscillations. A
value of e = 0.01 is used for all of the results presented in this paper.

4. Implicit Scheme
This section describes the way in which Eq. (3) is numerically represented and solved.

Application of a first order backward Euler formula to this system of equations yields the
following delta form equation

[JLTI + <g—§) n] (D"*! — D") = —R" (22)

where the superscript n is the pseudo-time iteration count and the vector R is the residual
vector. Following the formula given in Eq. (13) and applying a second-order central

difference formula to the viscous terms, at a point z;;,y;  the numerical approximation
to the residual vector is given by

Eivipr —Ej—i26 | Firyr2 — Fjr-1)2

Rjr= A€ + An 23)
C(Bo)jrik = (Bu)jmik (F)jrrs = (Fo)je—
2A¢E 2An

where the numerical fluxes E and F are evaluated using Eq. (14) with either the first,
third, or fifth order dissipation term given in Eqs. (15,19,20), respectively. The generalized
coordinates are chosen so that A¢ and An are equal to one.

The formation of the exact Jacobian matrix of the residual vector will be too expensive
for practical consideration, particularly when higher-order upwind differencing is used, so
the implicit side formulation will be limited to using the residual resulting from the first
order upwind differencing. Applying the first order dissipation term in Eq. (15) to the
convective terms, the residual is given by

11~ N _ _
Rij= S| Ejr1x — Ej—1k — AE]—‘:-l/z,k + AEj-|-1/2,k + AE;——l/Lk - AEj—l/2,k
; ; + — + - .
+Fjkt1 — Fje—1 — AFj,k-H/Z + AFj,k+1/2 + AFj,k—l/z B AFj,k—l/z (24)

—(Eo)js1k + (Eo)jm1k — (Fo)jksr + (Fo)jr—1

The exact Jacobian matrix of the residual vector will form a banded matrix of the form:

OR _ B OR;j
0D " |0Dj k-1

7 ODj 1k 0Djk " ODja k]

0.0 ik

0
) ) a_D]’k_i_l

(25)
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where B refers to a banded matrix. Using approximate Jacobians of the flux differences as
derived and analyzed by Barth [15], the implicit side of the numerical equation is formed
using the following terms

a?)]j% ~ %(_Bf”“—l B 1+ B )+ (r2)ik—

;)Ri_kk S H(Aymin = A AT )+ ()
gﬁ—jl,: ~ %( A;—+1/2,k + A;——I/Z,k o Aj_+1/2,k N Aj_—1/2’k (26)

B;,—k+1/2 + B;,_k—l/Z o Bj_,k-|—1/2 B Bj_,k—l/2)

% ~ %( Ajrrk = Ay T AT ) — ()i

aR]’k 1 a + —
0D, k41 ~ 5( Bjkt1 — Bj,k-|—1/2 + Bj,k—l—l/z) - (72)j,k+1

where A = A,,B = 4, in Eq. (8), and

AT = X AT X!
BE = X, AT X!

Only the orthogonal mesh terms are retained for the implicit viscous terms in order to
simplify the left-hand side of the equations. This results in

0

N =€+ )
J o€ (27)

_ Z( 2 + 2)]’ 3

The matrix I, is a modified identity matrix given by

Iy =

o OO
S = O
—_ o O

The numerical system of equations thus formed is solved using a line relaxation
method. In this procedure, the entire numerical matrix equation is first formed from
values at the previous time level. At this point the numerical equation is stored as a
banded matrix of the form

B[V,0,...,0,X,Y,Z,0,...0, WJAD = R

where AD = D" — D" and V, W, X, Y, and Z are vectors of 3 by 3 blocks which lie on the

diagonals of the banded matrix, with the ¥ vector on the main diagonal. This matrix is
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approximately solved using an iterative approach. One family of lines is used as the sweep
direction. Using, for example, the ¢ family, a tridiagonal matrix is formed by multiplying
the elements outside the tridiagonal band by the current AD and shifting them over to
the right-hand side. This can be represented by the following

B[X,Y,Z)(AD)"™ =R - AD!,_,V - AD! , | W

where | is an iteration index. This system can be solved most efficiently by first performing
and storing the LU decomposition of the tridiagonal matrix before the iteration is begun.
Then for each iteration, the right-hand side is formed using the latest known AD, and the
entire system is backsolved. The LU decomposition can be entirely vectorized, but the
backsolution is inherently recursive and cannot be vectorized.

5. Unsteady Formulation

The current scheme can be easily extended to solve unsteady problems with the use
of subiterations in pseudo-time at each physical time step. The details of this formulation
are given by Rogers and Kwak [3] and by Athavale and Merkle [4], and a short summary
of this follows. First, the time derivative in the momentum equations is discretized using
a second-order backward Euler formula, resulting in

I, ) . )
= (1.5D"+1 _ 9D 4 0.5D"—1) — _Rptt

where R is the same residual vector as in Eq. (23). Here physical time is denoted by ¢ and
the superscript n denotes the solution at time ¢ = nAt¢. This equation leaves no way to
update the pressure to the next time level because of the I,,, matrix on the left-hand side.

Here the continuity equation is replaced with an artificial compressibility relation and a
pseudo-time level is introduced, resulting in

, 5 I, 5 , ,
I (D"“vm+1 — D"“’m) = —Rrm (1.5D"+1’m — oD 1 0.5D"—1>

Here pseudo-time is denoted by 7 and the superscript m represents a subiteration index in
pseudo-time. The matrix I;, is a diagonal matrix given by

1 15 1.5
ItT = dlag |: :|

Ar’ At At

After linearizing the residual about the n + 1,m time level, the following equation is
obtained "

I ORN"™| /A ~

Lir on prtimtt _ Dn—I—l,m) _

[ 7T <ap> ] (

L (. . : .
= R = 2 (15D 2D 405D )

(28)

10



It can be seen that this equation is very similar to its steady-state counterpart. The
additional right-hand side terms and the different diagonal matrix on the left-hand side
are the only differences between the two. This makes it quite simple to program a code
capable of using this scheme to solve both unsteady and steady-state problems.

6. Boundary Conditions

Implicit boundary conditions are used at all of the boundaries, this helps make possible
the use of large time steps. At a no-slip surface, the velocity is specified to be zero, and
the pressure at the boundary is obtained by specifying that the pressure gradient normal
to the wall be zero. The boundary conditions used for inflow and outflow regions are based
on the method of characteristics. The formulation of these boundary conditions is similar
to that given by Merkle and Tsai [16], but the implementation is slightly different. The
scheme is derived here for a £ = constant boundary, with similar results for a = constant
boundary. The finite-speed waves which arise with the use of artificial compressibility are
governed by the following

)] OF OE oD -9D _,0D
o~ o epoc o M e
then .
oD oD
X — = AX1 2
or ¢ (29)

If one were to move the X ! matrix inside the spatial and time derivative, then it can be
seen that this would be a system of scalar equations, each of the form of a wave equation.
The sign of the eigenvalues in the A matrix determines the direction of travel of the
wave. For each positive (negative) eigenvalue, there is a wave propagating information
in the positive (negative) £ direction. The number of positive or negative eigenvalues
determines the number of characteristic waves propagating information from the interior
of the computational domain to the boundary. Thus these characteristics will be used to
bring information from the interior to the boundary. The rest of the information should
come from outside the computational domain, and so we are free to specify some boundary
conditions.

There will either be one or two characteristics traveling toward the boundary from
the interior because there is always at least one positive eigenvalue and one negative
eigenvalue. In order to select the proper characteristic waves, Eq. (29) is multiplied by a
diagonal selection matrix L which has an entry of one in the position of the eigenvalue we
wish to select, and zeros elsewhere. Thus

oD oD

LX'— =-LAX ' — 30
or o€ (30)
Replacing the time derivative with an implicit Euler time step gives
LX1 0 oD
LAX'— | (D" —D") = —LAX"! 31
( JAT + a.f) ( ) ot (31)
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This gives either one or two relations, depending on the number of non-zero elements
in L. To complete the set of equations, some variables must be specified to be constant.
Here is defined a vector €2 of the variables to be held constant, such that

o0 00D o9

i T e n+1 ny _ ¢
o 0 — 3D - 0 — aD(D D")=0 (32)
Combining Eqs. (31) and (32) gives
Lx-! g 00 oD"
IAX' =4+ — ) (D" —D")= —LAX!
< JAr T ot 6D> ( ) o€ (33)

Equation (33) can be used to update the variables implicitly at any of the inflow or outflow
boundaries with the proper choice of L and 2.

6.1 Inflow Boundary

At the inflow, there will be one characteristic wave traveling out of the computational
domain since fluid is traveling into the domain. If the incoming fluid is traveling in the
positive £ direction, then

Q>0
Q+c>0
Q—c<O0

This third eigenvalue will be the one we wish to select, and so L will have a one for the
third diagonal entry. If the incoming fluid is traveling in the negative ¢ direction, then

Q<0
Q+c>0
Q—c<0

and the second eigenvalue is the one corresponding to the wave propagation out of the
computational domain, requiring a one in the second diagonal entry of L.

Two different sets of specified variables have been used successfully for inflow bound-
aries. One set consists of the total pressure and the cross-flow velocity. This set is useful
for problems in which the inflow velocity profile is not known. For this set the 2 vector is

P+ %(u2 + '02) 90 1 uw v
v 0 0 1

The second possible set of specified variables consists of the velocity components. This
is useful for problems in which a specific velocity profile is desired at the inflow. The €2
vector for this is

0

=l gp =
v

oo o
o = O
— o o
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Notice that the row of 0 containing the zero is different in these two cases, the rows
have been shifted such that the non-zero rows of the jacobian matrix would have non-zero
elements on the diagonal.

6.2 Outflow Boundary

At the outflow boundary there are two characteristic waves traveling out of the com-
putational domain since fluid is also leaving the domain. If the fluid is traveling along the
positive £ direction then

Q>0
Q+c>0
Q—c<O0

and we require ones in the first two diagonal entries of the L matrix. If the fluid is traveling
in the negative £ direction then

Q<0
Q+c>0
Q—c<0

and we require ones in the first and third diagonal entries of the L matrix.
For all of the test problems presented in this paper static pressure was specified at
the outflow boundary, resulting in

p 90 1 0 0
0 0 0 O

7. Computed Results

The code was run for three two-dimensional laminar flow test cases. These are first, a
driven square cavity flow which has become a standard validation test case due to its simple
boundary conditions; second, the flow over a backward facing step which has also become
a popular validation case as it is an example of an internal flow with a recirculating region;
and third, the flow over a circular cylinder which has become an extensively validated
external flow problem. The computing times reported for all cases are the CPU seconds
used on a Cray 2 running on one processor. For comparison, these times are nearly the
same as obtained running on one processor of a Cray XMP-48. The computations are
run until the maximum residual has converged over 6 orders of magnitudes, the maximum
divergence of velocity over all the points is less than 107, and the flow quantities being
measured have approached a steady-state value in at least 4 significant digits. For all cases
presented here, the fifth-order upwind flux given in Eq. (20) was used.

For each of the test cases presented, the larger the time step A7, the better the
convergence was. For all cases run with this algorithm, the solutions have always remained
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stable independent of the magnitude of A7. The time step for the present results was set
to 10'% which effectively reduced the 1/A7 term to zero. The choice of 3 for each case
was arrived at through numerical convergence tests. It was found that the convergence
was sensitive to the value of 3, and in some cases, extreme values of 3 could cause the
scheme to become unstable. For all cases, however, it was easy to find a range of 3 for
which the code would converge very quickly. This is demonstrated for the case of the flow
over a backward facing step. The current scheme was found to be much less sensitive to
the value of B than the previous central difference, approximate factorization approach
[13], in part because the stability of the previous approach was limited by an approximate
factorization error which was a function of 5. The convergence of the current formulation
is degraded by the errors introduced by the approximate Jacobians on the left hand side
of the equations and by the fact that the whole system of equations are not exactly solved
by the line-relaxation process. If it were possible to use the exact Jacobians and solve the
system exactly then this would be a Newton iteration, in which case one would expect to
have quadratic convergence when using a very large time step for any value of 3. Analysis
of these errors and their relationship to 3 is underway, and it is hoped that a guideline for
chosing # and for minimizing the eigenvalues of the amplification matrix can be obtained.
Until such a guideline is found, the numerical tests will have to suffice.

7.1 Driwven Cavity Flow

The two-dimensional flow in a driven square cavity whose top wall moves with a uni-
form velocity has been used rather extensively as a validation test case by many authors
in the recent past. It provides a good test case in that there is no primary flow direc-
tion and the boundary conditions are very simple to employ. Ghia et al. [17] presented
extensive numerical data obtained from their multigrid vorticity-stream function formu-
lation using very fine grids. They reported results which agreed quite well with other
computational efforts. Other recent computational work involving this particular geom-
etry include Schreiber and Keller [18] who use a vorticity-stream function formulation;
Kim and Moin [19] who use a fractional-step method in primitive variables in conjunction
with approximate factorization; Vanka [20] who uses a multigrid technique in primitive
variables; and Benjamin and Denny [21] who use a centrally-differenced vorticity-stream
function formulation in conjunction with an ADI scheme.

The current calculations attempt to maintain the accuracy of these authors while
using fewer grid points. The flow is calculated for Reynolds numbers of 100, 400, 1000,
3200, 5000, 7500, and 10,000 using a grid of 81 by 81 points where the points are clustered
toward the walls. This grid is shown in Fig. 1. The value of the artificial compressibility
B was set to 20 for the Reynolds number of 100, to 10 for the 400 Reynolds number case,
to 2 for a Reynolds number of 1000, and was set to 1 for the higher Reynolds numbers.
The implicit line relaxation used 11 sweeps in the &-direction for each iteration.

The velocity components on the lines passing through the geometric center of the
cavity are compared to the results of Ghia et al. [17] in Fig. 2. The u-velocity component
is plotted along the y-axis for the different Reynolds numbers in Fig. 2a. The origins of
the plots has been shifted to the left for each successive Reynolds number case. The data

14



of Ghia was obtained from a uniform grid of 129 by 129 points for Reynolds numbers up
to 3200, and a uniform grid of 257 by 257 points for Reynolds numbers 5000 and greater.
It is seen that these two computed results agree very well with each other. In Fig. 2b, the
v-velocity component is plotted along the x-axis passing through the geometric center for
the different Reynolds numbers. The origins of these plots are shifted up for each successive
Reynolds number case. Again, good agreement is seen between the two computed results.

In Table 1, the stream function and vorticity quantities are given for the core of the
primary vortex for all the Reynolds numbers. Included with the present results are the
results of Ghia et al. [17], Schreiber and Keller [18], and Kim and Moin [19]. Listed
below the flow quantities is the grid size used for the calculation. Good agreement among
all calculations is seen in the lower Reynolds number cases. The discrepancies between
different solutions increase at the higher Reynolds numbers, although the same general
trend of a leveling off and then a slight decrease in the value of the stream-function is seen.

00 0.2 04 06 08 1.0

Fig. 1 Grid with 81x81 points used for computing the driven cavity flow.
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Fig. 2 Comparison between present results (solid line) and computations of
Ghia et al. [17] (symbols). [0: Re=100, (): Re=400, A: Re=1000, +: Re=3200,
x: Re=5000, ¢: Re=7500, and vy: Re=10,000.

Table 1

Stream-Function and Vorticity at the Center of the

Primary Vortex for Different Reynolds Numbers

Present Ghia et al. [24]  Schreiber et al. [25] Kim et al. [6]
Re I/szn (wv.c.) I/szn (wv.c.) ¢mzn (wv.c.) I/szn (wv.c.)
100 -0.1030(-3.104) -0.1034(-3.166) -0.1033(-3.182) -0.1030(-3.177)
81x81 129x129 121x121 65x65
400 -0.1131(-2.296) -0.1139(-2.294) -0.1130(-2.281) -0.1120(-2.260)
81x81 129x129 141x141 65x65
1000 -0.1171(-2.044) -0.1179(-2.050) -0.1160(-2.026) -0.1160(-2.026)
81x81 129x129 141x141 97x97
3200 -0.1195(-1.904)  -0.1204(-1.989) - 10.1150(-1.901)
81x81 129x129 97x97
5000  -0.1192(-1.846)  -0.1190(-1.860) - 10.1120(-1.812)
81x81 257x257 97x97
7500 -0.1186(-1.846) -0.1200(-1.880) - -
81x81 257x257
10000 -0.1177(-1.826)  -0.1197(-1.881)  -0.1028(-1.622) -
81x81 257x257 180x180
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To study in more detail the 10,000 Reynolds number case, the streamlines are plotted
in Fig. 3. The values of the stream-function contours for this plot are given in Table 2.
The contour levels plotted correspond with the values plotted by Ghia et al. [17] for this
case. Qualitatively, the plots appear to be identical. They each show secondary vortices
of the same size and shape in the lower corners and the upper left corner. In Table 3, the
stream-function, vorticity, and location of the vortex core for all the secondary vortices for
this 10,000 Reynolds number case are given for both the present results and the results of
Ghia et al. [17]. In this table, the initial T stands for top, B stands for bottom, R stands
for right, L stands for left, and the superscript number corresponds to the level of the
secondary vortex. Thus BR? refers to the third and smallest secondary vortex found in
the bottom right corner of the cavity. Quite good agreement between the two computations
is seen for this case, especially considering that the results of Ghia et al. [17] uses over 10
times as many grid points (66,049 versus 6561).

1.0,

0.81

T O T Mmoo

0.0 02 04 06 08 10

Fig. 3. Streamlines showing the driven cavity flow at Re = 10,000.
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Table 2

Values for Streamline Contours in Fig. 3

Contour Contour
number Value of @ letter Value of 9
1 1.0x107° A -1.0x 107°
2 50x107° B -1.0x 1074
3 1.0x 107 C -0.01
4 2.5 x 1074 D -0.03
5 5.0x 1074 E -0.05
6 1.0 x 1073 F -0.07
7 1.5x 1073 G -0.09
8 3.0x 1073 H -0.1
I -0.11
J -0.115
Table 3
Properties of the Secondary Vorticies for the Driven Cavity at Re = 10,000
Vortex Results Yoy.c. Wy.c. Xy.c. Vv.c.
TL Present 2.418x1073 2.191 0.0723 0.9117
Ghia et al. [24] 2.420x1073 2.183 0.0703 0.9141
BL 1.434x1073 2.097 0.0585 0.1686
1.518x1073 2.086 0.0586 0.1641
BR 3.227x1073 4.163 0.7619 0.0585
3.418x1073 4.053 0.7656 0.0586
BL? -5.120x10~7 -0.02207 0.1416 0.01722
-7.757x1077 -0.02754 0.1560 0.01950
BR? -2.103x10~4 0.3726 0.9277 0.07288
-1.313x10~4 0.3126 0.9336 0.06250
BR? -4.267x1077 -2.956x1073 0.9981 0.008697
-5.668x107° - 0.9961 0.003900

The convergence toward a steady-state for this problem was very good for the 3
lowest Reynolds number cases, which required less than 100 iterations and only 35 seconds
of computing time. The higher Reynolds number cases were slower to converge, the 10,000
case took 550 iterations and 215 seconds of computing time. The average of the computing
requirements for all seven cases came out to 250 iterations and 100 seconds of computing
time.
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7.2 Flow Over a Backward Facing Step

A second two-dimensional problem which has been used as a validation case is the
flow over a backward-facing step. The challenge in modeling this problem comes from the
fact that the size of the separation bubbles downstream of the step are very sensitive to
the pressure gradient in the flow. The geometry used in the calculations is shown in Fig.
4. At the inflow boundary, a parabolic profile is prescribed throughout the calculation,
and the static pressure is allowed to change. Two step-heights downstream from the
inflow a two to one expansion is encountered. The outflow boundary extends to 30 step
heights downstream of the step. The ability of the flow code to predict the reattachment
length, x1, of the primary separation bubble behind the step as well as the separation and
reattachment locations, x2 and x3, of the secondary separation bubble on the opposite wall
was tested by comparing the computed results to experimental values given by Armaly et
al. [22]. These quantities were measured for the laminar range of Reynolds numbers,
which are based on the average inflow velocity and twice the step height. The flow was
calculated using a grid of 100 points in the streamwise direction and 53 points in the cross-
flow direction. The initial conditions were specified to be freestream velocity at the interior
points with uniform pressure everywhere. For the Reynolds numbers of 100 and 200, 3
was set to 1, for the Reynolds number of 300 case, 0.5 was used, and for the Reynolds
numbers of 400 through 800, 8 was set to 0.1. The implicit line-relaxation process used
sweeps along the primary flow direction.

Hg »

O

X » |
30s |

|<—1=ﬂ———)-'
&

Fig. 4 Geometry of backward-facing step flow problem.

In Fig. 5, the quantities x1, x2, and x3 are plotted versus Reynolds number for both
the present computed results and the experimental results of Armaly et al. [22]. Good
agreement is seen between the two for the value of x1 at the lower Reynolds numbers
before the secondary separation appears. At a Reynolds number of 400, the secondary
separation bubble is present, and the computed primary reattachment length begins to
fall off of the experimental curve. Similarly, the computed secondary separation points
are shorter than the experimental values, although the same behavior is seen, that is
that the secondary separation point is upstream of the primary reattachment point. The
computed secondary reattachment point is seen to be close the experimental values. In
their experiment, Armaly et al. reported that the flow was found to be three-dimensional
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near the step for Reynolds numbers greater than 400, and that the three-dimensional
effects were negligible for lower Reynolds numbers. These three-dimensional effects could
explain the discrepancies between the calculations and experiment.

22
207 Ny *
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18 S cgmsﬂted §2 o
------- Computed x3 )
16 —.— Kimand Moinx1 7
2] m  Experimenta x1
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o 12- |
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2,
0 T T T T
0 200 400 600 800 1000

Reynolds Number

Fig. 5 Separation length versus Reynolds number for the flow over a backward
facing step. Solid line: computed x1, dashed line: computed x2, dotted line:
computed x3, A: experimental x1, +: experimental x2, and x: experimental
x3.

Results similar to the present results were reported by Kim and Moin [19]. They
reported a primary reattachment length of just under 12 step-heights for a Reynolds num-
ber of 800, and the present result for this Reynolds number is 11.48. They reported a
secondary separation bubble size of 7.8 and 11.5 step-heights for Reynolds numbers of 600
and 800, respectively. The present results show secondary separation bubble sizes of 7.34
and 11.07 step-heights for these two Reynolds numbers. The similarities between these
computational results give credence to the idea that the three-dimensionality of the flow
affects the separation bubble size.

The convergence characteristics of the code for this problem are very good. In Fig.
6a the convergence histories for the Re = 800 case is plotted for various values of the
parameter 4. This shows that the convergence is sensitive to the value of 3, but that it
will produce a solution for a wide range or 5. Fig. 6b plots the primary reattachment
length x1 versus iteration number for the Re = 100 and 800 cases. The Re = 100 case
converges within 55 iterations and the Re = 800 case converges within 165 iterations. The
average number of iterations required for the 8 different Reynolds number cases is 104
and the average required computing time is just under 11.5 seconds. Comparing this with
some of the authors’ previous results for a pseudocompressibility approach using central
differencing and approximate factorization in a diagonal scheme [13], the present method
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produces solutions to the backward-facing step problem much more efficiently. Over the
present range of Reynolds numbers, the previous method required on the average of 1500
iterations to converge, and several hundred seconds of computing time. The previous
results also reported a larger primary separation region at the higher Reynolds numbers
than the current results. The differences are attributed to the fact that the previous results
used a coarser grid whose inflow boundary was placed in the plane of the step instead of
two step heights upstream as in the current calculations.
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Fig. 6 Convergence history for the flow over a backward facing-step. /A\: Re =
100, x: Re = 800.

7.3 Flow Over a Circular Cylinder

As an example of an external flow problem, the flow over a two-dimensional circular
cylinder was calculated. The grid was an algebraically generated o-grid with 100 points in
the circumferential direction and 60 points radially. The grid points were clustered radially
toward the body and the outer boundary was placed 10 diameters from the cylinder. The
code was run and steady-state solutions were obtained for the Reynolds numbers of 5, 10,
20, and 40, based on the freestream velocity and the cylinder diameter. The value of the
artificial compressibility constant 5 was set to 50 for all the cases. At the outer boundary,
where fluid was entering the domain, the velocity was held constant, and where fluid was
leaving the domain, the static pressure was held constant. The line relaxation scheme
used 4 sweeps in both the coordinate directions, which seemed to be the best trade-off of
convergence versus computing time in numerical tests.
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Table 4
Flow Quantities for a Circular Cylinder

Source Reynolds Number

5 10 20 40

Lsep

Present 0 0.254 0.932 2.29
[29] 0 0.249 0.935 2.32
[30] 0 0.252 0.94 2.35
[31] 0 0.25 0.9 2.1
(33] (exp) — 0.34 0.93 2.13

Osep (degrees)

Present 0 28.8 43.1 53.0
[29] - 29.3 43.7 53.6
[30] 0 29.6 43.7 53.8
[31] > 6 29.7 44.1 54.8
[32] - - 43.6 54.5
(33] (exp) — 32.5 44.8 53.5

Cp (Cpyp)
Present 4.18 (2.19) 2.89 (1.602) 2.08 (1.242)  1.549 (1.011)
[29] - 2.80 2.01 1.536
[30] 4.12 (2.20) 2.85(1.600)  2.05(1.233)  1.522 (0.998)
[31] 4.66 (2.48) 3.18 (1.775)  2.25(1.35) 1.675 (1.095)
[32] - - 2.18 1.60
[34] (exp) 4.16 3.06 2.02 1.65

s (=Chr)

Present 1.847 (1.067) 1.476 (0 755) 1.265 (0.615) 1.147 (0.536)
[29] - 1.474 (0.670) 1.261 (0.537) 1.141 (0.512)
[30] 1.872 (1.044) 1.489(0.742) 1.269 (0.589) 1.144 (0.509)
[31] 2.23 (1.081) 1.744 (0.773) 1.457(0.614) 1.312 (0.543)

For each case, several flow quantities of the flow were computed. Fig. 7 shows a
schematic diagram of the geometry for this flow problem along with several of these flow
quantities. These quantities are the flow separation length measured from the rear of the
cylinder in cylinder diameters (Ls.p ), the angle which defines the point of separation from
the body (0sep), the coefficient of drag (Cp), the coefficient of pressure drag (Cp,), the
coefficient of pressure at the front (C,s) and rear (C),) stagnation points. In Table 4,
these quantities are presented for the present calculations as well as the numerical results
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of Takami and Keller [23], Dennis and Chang [24], Tuann and Olson [25], Braza et al [26],
and the experimental results of Coutanceau and Bouard [27] and of Tritton [28]. The
comparisons show that there is very good agreement among nearly all of the results.

FLOW

sep |

Fig. 7 Schematic diagram showing flow quantities for the circular cylinder flow
computations.

The convergence of the code toward a steady-state solution for the problem of a
circular cylinder was found to be quite good. All four Reynolds number cases converged
in less than 70 iterations, requiring an average of 21 seconds of computing time.

8. Summary

The use of a flux-difference split upwind differencing scheme has been applied to the
artificial compressibility equations to solve the steady-state Navier-Stokes equations. This
eliminates the need for any explicitly added artificial dissipation terms and any artificial
dissipation coeflicients. This code has been found to be much more robust and easier to run
than previous applications by the authors of the artificial compressibility method which
used central differencing plus artificial dissipation. The natural addition of dissipation
through the use of upwind-biased stencils requires no trial-and-error adjusting of smoothing
parameters as does the artificial dissipation. As well, it is thought that the terms on the
main diagonal of the implicit side matrix which are not present in the central difference
scheme make the scheme much more robust. Implicit boundary conditions based on the
method of characteristics were presented. The accuracy of the upwind scheme has been
established using three two-dimensional test cases. Good comparison was found between
the current method and other methods which used many more grid points in calculating
the flow inside a driven cavity. Results which compared well with experimental values were
obtained in calculating the flow over a backward facing step. The discrepancy at higher
Reynolds numbers could be explained by the three-dimensionality of the experiment, and
this was supported by other computational results. Finally, good comparison was found
in measuring the flow around a circular cylinder. Perhaps the most striking feature of the
current code is it’s ability to obtain steady-state solutions in a small number of iterations
for most problems. Very good convergence rates were observed when the proper choice of
the artificial compressibility constant 5 was made. No analytical guidelines for the choice
of this parameter have been derived as yet, and this is a subject of on going work. The
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extension of the current code to three-dimensions is currently being validated and has been

found to be straight forward.
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